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Abstract - It is for this reason that this paper creates a routing mechanism in machine learning systems by performing 

asynchronous inference graphs for such systems. The system will allow model chaining, champion/challenger evaluation, and 

traffic splitting; hence, it will have very efficient model deployment strategies. In detail, we describe the architecture and 

implementation of the routing mechanism along with its application to real-world ML pipelines. 
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Fig. 1 Architecture & Sequence 

 

1. Introduction 
In the current market conditions, the users are spread 

across different segments, sites, geographical regions, 

interests, behaviours, etc.  

 

In some cases, the problem can be huge, and we need to 

break down the problem into sub-problems. During these 

situations, it is important to provide the flexibility to test with 

a combination of models without giving up on latency and 

performance. 

 

Effective routing of large-scale machine learning 

systems among numerous inference services and models sits 

at the core of the whole approach to model performance 

optimization and experimentation. 

http://www.internationaljournalssrg.org/
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This paper describes the routing framework that supports 

asynchronous inference graph execution and allows several 

patterns: model chaining, champion/challenger frameworks, 

and traffic splitting by request. 
 

2. System Architecture 

Many real-time applications are intended to provide 

personalized recommendations and they involve single to 

multiple models involving hundreds of features like user 

activities, scoring, grouping of items, etc. There are other 

steps like pre-processing, post processing and the actual 

model prediction. Refer to Figure 1 – Architecture and 

sequence, which covers the overall sequence of the flow and 

the role of Asynchronous graph-based execution in providing 

faster and better recommendations with improved resource 

utilization. Following is a detailed explanation of each step 

involved. 

 

2.1. Model Chaining 

There are scenarios where the problem is divided into 

subproblems. A model solves each sub-problem; the output 

of the first model can be the input to the second model, and 

the final response is sent back as a recommendation. It is 

important to set up a chaining process to handle this flow. 

 

 

 

 

2.2. Champion/Challenger 

The champion/challenger framework allows us to 

evaluate how well the current model is performing versus the 

alternative challenger models. All the calls are routed to both 

the champion and challenger models, but the user only sees 

the response of the champion model. In contrast, the 

challenger model does not serve the real traffic but is used for 

evaluation. Under similar conditions, we could evaluate and 

see if the challenger model performs better than the champion 

model so that the challenger model can be switched to the 

champion. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Traffic Splitting 

Traffic splitting is designed to route the requests to 

different models based on predefined rules that include site-

specific ones like the US, UK, and Asia, among others, or 

other request metadata. 

This allows for controlled experimentation: it can be 

used to route traffic for A/B testing or serve different models 

to different user segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Use Cases 
3.1. Model Chaining Sequential Inference for Multi-Step 

Processing 

It is useful when there is a complex problem and it can 

be solved in multiple stages. For example, when we try to 

build a recommendation system for an e-commerce website 

on the deals to be shown.  

 

The first model can come up with the specific interests 

of the user. This output can serve as the input to the second 

model, which can bring the actual recommendations, and 

further, if there are any filters or further drill down, this can 

be solved with another model.  

 

This gives a multi-step approach to solving a complex 

problem and provides the flexibility to use the model in other 

use cases as well. 

 

3.2. Champion/Challenger Framework - A/B Testing and 

Model Validation 

The champion/challenger framework provides immense 

value in a production environment when one needs to test 

new models without compromising the reliability of the 

system at present. Fraud detection, for example, has the 

champion model-M1-as the current model is already at work 

in production and reliable. It automatically diverts some of 

the traffic to a new model, M2, that includes additional 

features or a different algorithm. The majority of answers still 

come from M1, but the output of M2 is logged and compared 

with the output of M1 to make sure it performs as well in the 

real world. Benefits: 

 

Safely ramps new models into production—performance 

of empirical model without sacrificing system integrity. 

Model continuous deployment can enable the iterative 

improvement of the model. 

 

3.3. Traffic Splitting - Targeted Model Deployment 

There are multiple scenarios where traffic split is 

important. For example, there is an existing model that is 
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serving traffic, and we want to try a new model for some 

percentage of users before enabling the model for the full set. 

In that case, we should have a mechanism to split the traffic 

into multiple percentages like 95/5, 80/20, and 50/50 then 

enable 100% with the new model. 

 

There can also be a targeted traffic split as the users 

registered to the US site are served with Model A versus users 

registered to the UK site are served with Model B, etc. There 

can be several other parameters, like user behaviour, based 

on which this can provide personalized recommendations. 

 

Benefits 

• It allows us to perform the business-as-usual flow to run 

as is and test the challenger model in parallel. 

• The Analysis can be done in the background with 

different sets of users targeting multiple segments. 

• Based on the results, we can easily switch the champion 

model to the challenger and evaluate the metrics. 

 

4. Evaluation 
To evaluate the effectiveness of the proposed routing 

mechanisms, we take the following KPIs into account: 

 

4.1. Handling Concurrent Operations 

In this case, there are scenarios where we need to 

perform the following operations concurrently: 

• Fetching Multiple features from different data sources 

for One or multiple models  

• Concurrent Model prediction as an intermediate step or 

final step  

• Pre-processing and post-processing can also be 

concurrent processes depending on the Model execution 

logic. 

 

Graph Algorithms, task queues and concurrency patterns 

like Scatter gather are the techniques implemented. 

Bottlenecks can be reduced by exhaustive error handling, fail 

fast, throttling and, most importantly, by avoiding race 

conditions or deadlocks. 
 

4.2. Latency and Throughput 

The asynchronous execution of the inference graph is 

developed to minimize latency while maximizing 

throughput. Since multiple models can execute at the same 

time-especially in the model-chaining situation can measure 

the following: 
 

Latency Reduction: Measure the end-to-end processing 

time for requests routed through the system. Compare 

synchronous to asynchronous execution in terms of latency 

to demonstrate the performance gains. 
 

Increased Throughput: Test the number of requests the 

system can handle in a unit amount of time; this describes the 

scalability benefit of executing asynchronous code. 

One such example of Model chaining is the risk model; 

the main purpose of the model is to detect any fraudulent 

transactions. It is a multi-step process that can involve 

running some rules first to detect fraudulent transactions and 

then executing a deep learning model that can identify any 

anomalies. Sequential execution of the model may take a 

minimum of 200 to 300 milliseconds. 
 

However, if you think deeper, both these steps are 

independent and can be executed parallel, and this can help 

reduce the latency by half. But we need to be very careful 

before calculating the results. This is handled through the 

Model ensemble. 

 

4.3. Model Performance Metrics 

There are several metrics which can let us know how the 

model is performing: 

 

General Metrics: 

Engagement: How many new users are we able to bring 

using the models?  

 

Conversion: How many existing users are we able to 

convert to buy a product in case we are dealing with a 

product-based platform like an e-commerce platform 
 

Specific Metrics 

The above metrics can be evaluated against the 

champion model and challenger model to see which one is 

performing better, based on which we can take a call. Further, 

we can get more granular by seeing how well the model is 

performing in specific sites like the US, UK, Germany, etc. 

or with respect to the segment of the population. For example, 

a particular model that recommends a specific Fashion might 

work well in the US, but it might not work well in Asia.  
 

Several other indicators are the Opens, Clicks and other 

interactive icons, which will give us a picture of where the 

user engagement is more. 

 

4.4. System Flexibility and Maintainability 

Model routing with several frameworks like 

champion/challenger configurations provides the flexibility 

to test the model. One of the additional aspects to be 

considered is how fast a change can be pushed, tested, and 

deployed. 
 

4.5. Resource Utilization 

Through traffic splitting and chaining of models 

wherever necessary, the system optimizes resource 

utilization.  
 

Resource Efficiency: Monitor computation resources 

consumed during model execution. Also, observe resource 

utilization of synchronous and asynchronous modes of 

execution and account for the cost savings. 

https://www.linkedin.com/in/ganga5v/
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 Overall, this article provides an improved framework to 

develop models, test models, handle complex problems with 

models across different stages and better routing. Model 

chaining can be very useful when you want to split a complex 

problem into subproblems with completely different 

solutions. Champion / Challenger is another framework that 

is quite helpful to evaluate if our model is performing as 

expected across different segments or scenarios, especially 

when we have more than one solution. We are trying to find 

the optimal solution along with traffic split, which can be 

useful to switch between models without impacting the 

business.
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