
International Journal of Computer Trends and Technology Volume 72 Issue 10, 1-4, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P101 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Asynchronous Inference Graph Execution for Model

Routing in Machine Learning Systems

Gangadharan Venkataraman

Engineering Lead, Software Engineer Specialized in MLPlatform, Live Commerce and Marketing Technologies, Seattle,

Washington, USA.

Corresponding Author : gangadharan.venkataraman@gmail.com

Received: 16 August 2024 Revised: 20 September 2024 Accepted: 05 October 2024 Published: 22 October 2024

Abstract - It is for this reason that this paper creates a routing mechanism in machine learning systems by performing

asynchronous inference graphs for such systems. The system will allow model chaining, champion/challenger evaluation, and

traffic splitting; hence, it will have very efficient model deployment strategies. In detail, we describe the architecture and

implementation of the routing mechanism along with its application to real-world ML pipelines.

Keywords - Inference Service, Model Routing, Asynchronous Execution, Model Chaining, Champion/Challenger, Traffic

Splitting.

Fig. 1 Architecture & Sequence

1. Introduction
In the current market conditions, the users are spread

across different segments, sites, geographical regions,

interests, behaviours, etc.

In some cases, the problem can be huge, and we need to

break down the problem into sub-problems. During these

situations, it is important to provide the flexibility to test with

a combination of models without giving up on latency and

performance.

Effective routing of large-scale machine learning

systems among numerous inference services and models sits

at the core of the whole approach to model performance

optimization and experimentation.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Gangadharan Venkataraman / IJCTT, 72(10), 1-4, 2024

2

This paper describes the routing framework that supports

asynchronous inference graph execution and allows several

patterns: model chaining, champion/challenger frameworks,

and traffic splitting by request.

2. System Architecture

Many real-time applications are intended to provide

personalized recommendations and they involve single to

multiple models involving hundreds of features like user

activities, scoring, grouping of items, etc. There are other

steps like pre-processing, post processing and the actual

model prediction. Refer to Figure 1 – Architecture and

sequence, which covers the overall sequence of the flow and

the role of Asynchronous graph-based execution in providing

faster and better recommendations with improved resource

utilization. Following is a detailed explanation of each step

involved.

2.1. Model Chaining

There are scenarios where the problem is divided into

subproblems. A model solves each sub-problem; the output

of the first model can be the input to the second model, and

the final response is sent back as a recommendation. It is

important to set up a chaining process to handle this flow.

2.2. Champion/Challenger

The champion/challenger framework allows us to

evaluate how well the current model is performing versus the

alternative challenger models. All the calls are routed to both

the champion and challenger models, but the user only sees

the response of the champion model. In contrast, the

challenger model does not serve the real traffic but is used for

evaluation. Under similar conditions, we could evaluate and

see if the challenger model performs better than the champion

model so that the challenger model can be switched to the

champion.

2.3. Traffic Splitting

Traffic splitting is designed to route the requests to

different models based on predefined rules that include site-

specific ones like the US, UK, and Asia, among others, or

other request metadata.

This allows for controlled experimentation: it can be

used to route traffic for A/B testing or serve different models

to different user segments.

3. Use Cases
3.1. Model Chaining Sequential Inference for Multi-Step

Processing

It is useful when there is a complex problem and it can

be solved in multiple stages. For example, when we try to

build a recommendation system for an e-commerce website

on the deals to be shown.

The first model can come up with the specific interests

of the user. This output can serve as the input to the second

model, which can bring the actual recommendations, and

further, if there are any filters or further drill down, this can

be solved with another model.

This gives a multi-step approach to solving a complex

problem and provides the flexibility to use the model in other

use cases as well.

3.2. Champion/Challenger Framework - A/B Testing and

Model Validation

The champion/challenger framework provides immense

value in a production environment when one needs to test

new models without compromising the reliability of the

system at present. Fraud detection, for example, has the

champion model-M1-as the current model is already at work

in production and reliable. It automatically diverts some of

the traffic to a new model, M2, that includes additional

features or a different algorithm. The majority of answers still

come from M1, but the output of M2 is logged and compared

with the output of M1 to make sure it performs as well in the

real world. Benefits:

Safely ramps new models into production—performance

of empirical model without sacrificing system integrity.

Model continuous deployment can enable the iterative

improvement of the model.

3.3. Traffic Splitting - Targeted Model Deployment

There are multiple scenarios where traffic split is

important. For example, there is an existing model that is

Request Response M2 M1

Request M1

M2

Mn

Response

Request Response

M1

M2

M3

UK

USA

ASIA

https://www.linkedin.com/in/ganga5v/

Gangadharan Venkataraman / IJCTT, 72(10), 1-4, 2024

3

serving traffic, and we want to try a new model for some

percentage of users before enabling the model for the full set.

In that case, we should have a mechanism to split the traffic

into multiple percentages like 95/5, 80/20, and 50/50 then

enable 100% with the new model.

There can also be a targeted traffic split as the users

registered to the US site are served with Model A versus users

registered to the UK site are served with Model B, etc. There

can be several other parameters, like user behaviour, based

on which this can provide personalized recommendations.

Benefits

• It allows us to perform the business-as-usual flow to run

as is and test the challenger model in parallel.

• The Analysis can be done in the background with

different sets of users targeting multiple segments.

• Based on the results, we can easily switch the champion

model to the challenger and evaluate the metrics.

4. Evaluation
To evaluate the effectiveness of the proposed routing

mechanisms, we take the following KPIs into account:

4.1. Handling Concurrent Operations

In this case, there are scenarios where we need to

perform the following operations concurrently:

• Fetching Multiple features from different data sources

for One or multiple models

• Concurrent Model prediction as an intermediate step or

final step

• Pre-processing and post-processing can also be

concurrent processes depending on the Model execution

logic.

Graph Algorithms, task queues and concurrency patterns

like Scatter gather are the techniques implemented.

Bottlenecks can be reduced by exhaustive error handling, fail

fast, throttling and, most importantly, by avoiding race

conditions or deadlocks.

4.2. Latency and Throughput

The asynchronous execution of the inference graph is

developed to minimize latency while maximizing

throughput. Since multiple models can execute at the same

time-especially in the model-chaining situation can measure

the following:

Latency Reduction: Measure the end-to-end processing

time for requests routed through the system. Compare

synchronous to asynchronous execution in terms of latency

to demonstrate the performance gains.

Increased Throughput: Test the number of requests the

system can handle in a unit amount of time; this describes the

scalability benefit of executing asynchronous code.

One such example of Model chaining is the risk model;

the main purpose of the model is to detect any fraudulent

transactions. It is a multi-step process that can involve

running some rules first to detect fraudulent transactions and

then executing a deep learning model that can identify any

anomalies. Sequential execution of the model may take a

minimum of 200 to 300 milliseconds.

However, if you think deeper, both these steps are

independent and can be executed parallel, and this can help

reduce the latency by half. But we need to be very careful

before calculating the results. This is handled through the

Model ensemble.

4.3. Model Performance Metrics

There are several metrics which can let us know how the

model is performing:

General Metrics:

Engagement: How many new users are we able to bring

using the models?

Conversion: How many existing users are we able to

convert to buy a product in case we are dealing with a

product-based platform like an e-commerce platform

Specific Metrics

The above metrics can be evaluated against the

champion model and challenger model to see which one is

performing better, based on which we can take a call. Further,

we can get more granular by seeing how well the model is

performing in specific sites like the US, UK, Germany, etc.

or with respect to the segment of the population. For example,

a particular model that recommends a specific Fashion might

work well in the US, but it might not work well in Asia.

Several other indicators are the Opens, Clicks and other

interactive icons, which will give us a picture of where the

user engagement is more.

4.4. System Flexibility and Maintainability

Model routing with several frameworks like

champion/challenger configurations provides the flexibility

to test the model. One of the additional aspects to be

considered is how fast a change can be pushed, tested, and

deployed.

4.5. Resource Utilization

Through traffic splitting and chaining of models

wherever necessary, the system optimizes resource

utilization.

Resource Efficiency: Monitor computation resources

consumed during model execution. Also, observe resource

utilization of synchronous and asynchronous modes of

execution and account for the cost savings.

https://www.linkedin.com/in/ganga5v/

Gangadharan Venkataraman / IJCTT, 72(10), 1-4, 2024

4

 Overall, this article provides an improved framework to

develop models, test models, handle complex problems with

models across different stages and better routing. Model

chaining can be very useful when you want to split a complex

problem into subproblems with completely different

solutions. Champion / Challenger is another framework that

is quite helpful to evaluate if our model is performing as

expected across different segments or scenarios, especially

when we have more than one solution. We are trying to find

the optimal solution along with traffic split, which can be

useful to switch between models without impacting the

business.

References

[1] D. Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” NIPS'15: Proceedings of the 28th International Conference on

Neural Information Processing Systems, Montreal Canada, vol. 2, pp. 2503-2511, 2015. [Google Scholar] [Publisher Link]

[2] Daniel Crankshaw et al., “Clipper: A Low-Latency Online Prediction Serving System,” 14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), Boston, MA, pp. 613-627, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] Matei Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” NSDI '13: 10th

USENIX Symposium on Networked Systems Design and Implementation, San Jose, CA, pp. 1-14, 2012. [Google Scholar] [Publisher

Link]

[4] Martín Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), Savannah, GA, USA, pp. 265-283, 2016. [Google Scholar] [Publisher Link]

[5] Neoklis Polyzotis et al., “Data Management Challenges in Production Machine Learning,” SIGMOD '17: Proceedings of the 2017 ACM

International Conference on Management of Data, Chicago Illinois USA, pp. 1723-1726, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Ruben Mayer, and Hans-Arno Jacobsen, “Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques, and Tools,”

ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1-37, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://www.linkedin.com/in/ganga5v/
https://scholar.google.com/scholar?cluster=2255096949091421445&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.5555/2969442.2969519
https://doi.org/10.48550/arXiv.1612.03079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clipper%3A+A+Low-Latency+Online+Prediction+Serving+System&btnG=
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://scholar.google.com/scholar?cluster=12651943154484674722&hl=en&as_sdt=0,5
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://scholar.google.com/scholar?cluster=13312035063239472247&hl=en&as_sdt=0,5
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/3035918.3054782
https://scholar.google.com/scholar?cluster=4260187704647314359&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3035918.3054782
https://dl.acm.org/doi/10.1145/3035918.3054782
https://doi.org/10.1145/3363554
https://scholar.google.com/scholar?cluster=17504097871596486402&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3363554

